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Abstract. In this work we classify all smooth surfaces with geometric genus

equal to three and an action of a group G isomorphic to (Z/2)k such that the

quotient is a plane. We find 11 families. We compute the canonical map of

all of them, finding in particular a family of surfaces with canonical map of
degree 16 that we could not find in the literature. We discuss the quotients

by all subgroups of G finding several K3 surfaces with symplectic involutions.

In particular we show that six families are families of triple K3 burgers in the
sense of Laterveer.
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1. Introduction

The surfaces of general type with geometric genus 3 are interesting from several
different points of view. This is not the right place to recall their long story, so
we just focus here to some topics that directly involve them where important
developments have been seen in the last years through the contribution of various
scholars.

A first interest come from the study of the degree of the canonical map of
a surface of general type, see the beautiful recent survey [23], whose degree is
bounded from above by 36, as showed long time ago by Persson in [25]. Recently
it has been proved the the bound is sharp in [17, 28, 29]. It is still not known if
all the integers between 1 and 36 can be the degree of the canonical map of some
surfaces of general type: it is however known since [2] that if the degree is 23 or
more then the surfaces must have pg = 3. We refer to the introduction of [8] for an
account of what we know on this problem, just mentioning here that most of the
examples with highest degree of the canonical map that we know are obtained as

Galois covers of rational surfaces with Galois group isomorphic to (Z/2)k: see for
example the examples with canonical map of degree 32 in [13] and those of degree
20 in [3].

On the other hand, a classical conjecture of Claire Voisin, describing how
0−cycles on a surface S should behave when pulled-back to a self-product of
enough copies of S, led Laterveer to the definition of triple K3 burgers. These
are surfaces with pg = 3 provided with three pairwise commuting involutions
such that the quotients are K3 surfaces. Studying them, Laterveer proved in [19]
Voisin’s conjecture for some families of surfaces, including a family of surfaces with
pg = 3 (that he calls ”Garbagnati surfaces of type G3”) with an action of (Z/2)2

whose quotient is P2.
This leads us to the problem, interesting by itself, of studying and classifying

all surfaces with pg = 3 with an action of a group isomorphic to G = (Z/2)k

such that the quotient S/G is isomorphic to P2 and then studying their geometry,
by investigating their canonical map and if they are triple K3 burgers. We call
surfaces like these k−double planes for short.

We find that these surfaces form 11 families. Our classification is summarized
by the following Theorem 5.1.

Theorem. All smooth k-double covers S of the plane with geometric genus 3 are
regular surfaces with ample canonical class.

They form 11 unirational families, that we labeled as A1, A2, A3, A4, B2, C3,
C4, D3, D4, D5 and E3 in a way that the number in the notation equals k. In
particular A1 is a family of double planes, A2 and B2 are two families of bidouble
planes and so on.

The degree of the canonical map φKS
is constant in each family.

We summarize in the following table the modular dimension (the dimension
of its image in the Gieseker moduli space of the surfaces of general type) of each
family, and the values of K2

S and degφKS
of each surface in the family:
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Family A1 A2 A3 A4 B2 C3 C4 D3 D4 D5 E3

mod. dim. 36 20 12 8 19 12 8 12 8 6 12
K2
S 2 4 8 16 9 8 16 2 4 8 8

degφKS
2 4 8 16 9 8 16 2 4 8 4

In particular the modular dimension of each family equals 4 + 26−k with one
exception, the family B2, whose dimension is 19. The canonical map is a morphism
of degree K2

S on P2 unless S of type E3, in which case the canonical map is a
rational map of degree K2

S − 4 = 4 undefined at 4 points.

Please refer to the beginning of Section 5 for a detailed explanation of the
notation chosen for the 11 families.

The surfaces in the families A1, A2, A3, A4 appeared already in [7, Theorem
1.1], since their canonical map is exactly the quotient by the action of G. The
surfaces of type B2 are the aforementioned ”Garbagnati surfaces of type G3”. All
the other families seems not to have studied before. We note that we have two
families with canonical map of degree 16: the surfaces of type A4 are special cases
of a famous construction of Persson, whereas the surfaces of type C4 seems to be
new.

We study the geometry of all the quotients of these surfaces by subgroups of
G, detecting in particular all K3 surfaces. We obtain (Corollary 6.3)

Theorem. The families B2, C3, D3, D4, D5 and E3 are families of triple K3
burgers.

M. Manetti has observed that, reading the definition of triple K3 burger, it
naturally raises the question of whether the three involutions generate a group of
order 4 or 8. In all our families of K3 burgers they generate a group of order 4.
We note that the same happens for all K3 burgers that we know. In fact, the
triple K3 burgers in [18] are hypersurfaces in a weighted projective space P(13, 2s)
invariant for the group

(x0, x1, x2, y) → (±x0,±x1,±x2, y)
that, as a subgroup of the automorphism group of P(13, 2s), has order 4 (since
2s even implies (x0, x1, x2, y) = (−x0,−x1,−x2, y)). The 4 cases listed in both
[18, Proposition 3.8 and 3.10] are in fact different linearizations of this subgroup.
The three pairwise commuting involutions giving the structure of triple K3 burger
are the nontrivial elements of this group. This raises the following.

Question: Is it possible that the three pairwise commuting involutions in the
definition of triple K3 burger generate a group of order 8?

We mention again here the family C4, since in this case, exactly as for the
triple K3 burgers, there are three involutions in the group G whose quotients have
pg = 1. The quotient surfaces are not of type K3 but special Horikawa surfaces as
those studied in [20], which seem to be very similar to K3 surfaces from the point
of view of the Voisin’s conjecture.

We note that a similar analysis should be possible with the same techniques
for any rational surface, as those considered in Bin’s papers as [3]. The main
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argument is that by using the standard formulas for abelian covers, if the Galois
group is of the form (Z/2Z)k, the numerical class of all divisors Dg is determined
by the characteristic line bundles Lχ. We give the explicit formula in Theorem
2.11. So we first compute the possible Lχ, that is easy, and then deduce from it
the class of each divisor.

This is (unfortunately) not true for general abelian group, since different nu-
merical class of divisors may give the same characteristic sheaves Lχ, see Remark
2.7. So a similar analysis for different groups may be harder. However, there are
several interesting examples of Galois covers of rational surfaces with Galois group

of the form (Z/pZ)k, see for example [9] and [1], so also such a classification would
be desirable.

The paper is organized as follows.
In section 1 we recall the general theory of abelian covers and prove the just

mentioned Theorem 2.11 when the group is of the form (Z/2Z)k. In section 2 we
recall the known results on the canonical systems of abelian covers. Note that
in these two sections we use the multiplicative notation for G∗ since it is more
efficient for writing the general theory, whereas in the other sections we switch to
the additive notation which is more convenient for the computations.

In section 3 we study and classify all the smooth k−double planes, obtaining
the 11 mentioned families in terms of the branch divisors Dg and of the charac-
teristic sheaves Lχ.

In section 4 we prove Theorem 5.1, and then we study each family separately.
For each family we write explicit equations in a weighted projective space, and
describe the quotients by all subgroups of G, determining all the K3 surfaces
obtained in this way and the symplectic involutions on them.

Finally, in the last section, we determine which families are families of triple
K3 burgers.

Notation. A Galois cover is a finite morphism π : X → Y among algebraic vari-
eties with the property that there is a subgroup G of Aut(X) such that π factors as
the composition of the quotient map X → X/G with an isomorphism X/G ∼= Y .
We will always assume Y to be irreducible, whereas we find it convenient for the
general theory of Galois covers not to do any analogous assumption for X. The
finite group G is the Galois group of π.

An abelian cover is a Galois cover whose Galois group is an abelian group. A

k−double cover is an abelian cover whose Galois group is isomorphic to (Z/2Z)k.
A k−double plane is a k−double cover of P2.

2. Abelian covers

In this section we collect some preliminary results on abelian covers, mostly
well known.

Let π be an abelian cover with Y smooth and X normal. Following [24], we
decompose the direct image of the structure sheaf of X as a sum of line bundles
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corresponding to the characters of G

π∗OX =
⊕
χ∈G∗

L−1
χ .

By the Zariski-Nagata purity theorem, the branch locus of π is a divisor. We
call this divisor D when it is taken with the reduced structure. The ramification
divisor R of π is the preimage π−1(D), also taken with the reduced structure.

Let T be an irreducible component of R. By [24, Lemma 1.1] the elements of
G fixing all points of T form a cyclic subgroup H of G, the inertia group of T .
By [24, Lemma 1.2], there is a unique character ψ : H → C∗, a generator for the
group of characters H∗, and a uniformizing parameter t for OX,T such that, for
all h ∈ H, h acts as

t 7→ ψ(h)t.

This gives a natural decomposition

R =
∑

H<G cyclic
ψ generating H∗

RH,ψ

of the ramification divisor as follows: if T is an irreducible component of R, then
T is a summand of RH,ψ if and only if its inertia group is H and the corresponding
character is χ.

As in [10] we observe that there is a natural bijection among the pairs (H,ψ) as
above and the group G, associating to each element g ∈ G the subgroup H = ⟨g⟩
generated by it and the unique character ψ ∈ H∗ with the property that ψ(g) =

e
2πi
|H| . So we can set Rg := RH,ψ and write R =

∑
g∈GRg.

Since G is abelian, if T1 and T2 are two irreducible components of R in the
same G−orbit, they share the same inertia group H and the same character ψ, so
T1 and T2 belong to the same summand Rg. Therefore there are reduced divisors
Dg (denoted DH,ψ in [24]) such that Rg = π−1(Dg). These give a decomposition
of the branch divisor

D =
∑
g∈G

Dg.

Definition 2.1 ([24, Definition 2.1]). The building data of an abelian cover
π : X → Y are the line bundles Lχ and the reduced effective divisorsDg introduced
above.

Note that, if 0 is the identity of G, D0 = 0. Analogously, if 1 is the trivial
character of G, L1

∼= OY .

Remark 2.2. X is connected (equivalently: irreducible) if and only if, for all
χ ̸= 1, H0(L−1

χ ) = 0.

The building data determine the cover in the following sense.

Definition 2.3. Let π : X → Y be an abelian cover with Galois group G, Y
smooth and X normal. Fix an element g ∈ G and a character χ ∈ G∗. Let o(g)
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be the order of g. Then there exists a unique integer 0 ≤ rχg ≤ o(g)− 1 such that

χ(g) = er
χ
g · 2πi

o(g) .

Given a further character χ′ ∈ G∗ we set moreover

εgχ,χ′ =

{
1 if rχg + rχ

′

g ≥ o(g)

0 else
.

Theorem 2.4 ([24, Theorem 2.1 and Corollary 3.1]). Let π : X → Y be an abelian
cover with Galois group G, Y smooth and X normal.

Then for all χ, χ′ ∈ G∗

(2.1) Lχ ⊗ Lχ′ ∼= Lχ·χ′ ⊗OX

∑
g∈G

εgχ,χ′ ·Dg

 .

Conversely, given an abelian group G and a smooth irreducible variety Y assume
that we have

a line bundle Lχ on Y for each character χ ∈ G∗ and
an effective divisor Dg for all g ∈ G

satisfying (2.1), and with the property that the divisor D =
∑
Dg is reduced.

Then there is a unique Galois cover π : X → Y whose Galois group is G, and
whose building data are the Lχ and the Dg, such that X is normal.

Equation (2.1) shows that the divisors Dg determine the line bundles Lχ up
to torsion as follows.

Definition 2.5. For all χ set Lχ ∈ Pic(Y ) = Div(Y )/ ∼ for the divisor class of
the invertible sheaf Lχ. We use the additive notation for the torsion product in
Pic(Y ).

Corollary 2.6 (see [24, Proposition 2.1]).

o(χ)Lχ ≡
∑
g∈G

o(χ)rχg
o(g)

Dg.

In particular

Lχ ≡num
∑
g∈G

rχg
o(g)

Dg.

Proof. Note first that by definition of rχg , for all k ∈ N, rχk

g is the remainder of
the Euclidean division of krχg by o(g). Then

Lkχ ∼= Lχk

∑
g∈G

⌊
krχg
o(g)

⌋
Dg


follows by induction on k applying (2.1) to the products Lχ ⊗ Lχk−1 .

For k = o(χ) we obtain the stated formula since L1
∼= OX and

o(χ)rχg
o(g) is

integral. □
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In particular, if Pic(Y ) is torsion free (for example if Y is rational) then the
divisors do determine the line bundles.

In the next sections we are going to walk in the opposite direction: first we
look for the ”good” possible Lχ and then we find suitable divisors Dg realizing
them.

Of course the divisors will be free to move in their linear equivalence class. We
find it important to notice that for general G the line bundles Lχ do not determine
even the linear equivalence class of the divisors Dg. In fact this fails already for
cyclic groups of order 5 of more. We just write one example of this phenomenon.

Example 2.7. Set G = Z/5Z =
{
0, 1, 2, 3, 4

}
Then the following choices

degD0 = 0 degD1 = 2 degD2 = 0 degD3 = 0 degD4 = 2

degD0 = 0 degD1 = 1 degD2 = 1 degD3 = 1 degD4 = 1

give both Galois covers with Galois group G and Lχ ∼= OP1(2) for all χ ̸= 1.

In contrast, we show in the forthcoming Theorem 2.11 that when G ∼= (Z/2Z)k

the Lχ determine the linear equivalence class of the divisors Dg up to torsion.
We first need a Lemma on the sums of the rχg for general abelian covers.

Definition 2.8. The natural isomorphism G → G∗∗ allows each g in G to be
considered as a character of G∗, which we will also denote by g, by setting

g(χ) = χ(g).

Then ker g is the subgroup of G∗ of the characters χ such that χ(g) = 1. In other
words

χ ∈ ker g ⇔ g ∈ kerχ.

Let H be a subgroup of G∗, possibly of the form ker g. For all g ∈ G we will
denote by g|H the element of H∗ obtained restricting g to H.

Lemma 2.9. For all g ∈ G, for each subgroup H of G∗,

(2.2)
∑
χ∈H

rχg =
|H|
2
o(g)

(
1− 1

o(g|H)

)
In particular

(2.3)
∑
χ∈G∗

rχg =
|G|
2

(o(g)− 1) .

Proof. Since rχg = 0 if and only if χ ∈ ker g, then the number of addenda of∑
χ∈H rχg that are equal to zero is exactly

∣∣ker g|H∣∣ = |H|
o(g|H) .

The remaining |H|
(
1− 1

o(g|H)

)
addenda are integers between 1 and o(g)− 1.

Since rχg ̸= 0 implies rχg + rχ
−1

g = o(g) it follows that their average equals o(g)
2 ,

thus giving the result. □
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It follows that

Proposition 2.10.

(2.4)
∑
χ∈G∗

Lχ ≡num
|G|
2

∑
g∈G

(
1− 1

o(g)

)
Dg.

Moreover, for every g ∈ G,

(2.5)
∑

χ∈ker g

Lχ ≡num
|G|
2o(g)

∑
h∈G

(
1− 1

o(h| ker g)

)
Dh.

Proof. By Corollary 2.6 Lχ ≡num
∑
g∈G

rχg
o(g)Dg.

Summing over all χ and using (2.3) we obtain (2.4).
Setting H = ker g and summing only on the characters in H, using (2.2) and

|H| = |G|
o(g) we obtain (2.5). □

Now we can give the announced formula for the linear systems of the divisors

Dg in terms of the Lχ when the group is (Z/2Z)k.

Theorem 2.11. Let π : X → Y be a k−double cover, Y smooth and X normal,
with set of data Lχ, Dg. Then for all g ∈ G

Dg ≡num
1

2k−2

 ∑
χ ̸∈ker g

Lχ −
∑

χ∈ker g

Lχ

 .

Proof. Let us fix an element g ∈ G = (Z/2Z)k, g ̸= 0.

We note that for all h in (Z/2Z)k, o(h| ker g) equals 1 if h ∈ ⟨g⟩ = {0, g} and 2
otherwise. Then by (2.5)∑

χ∈ker g

Lχ ≡num 2k−2
∑
h∈G

(
1− 1

o(h| ker g)

)
Dh = 2k−3

∑
g ̸∈⟨h⟩

Dh.

By (2.4), recalling that D0 = 0, we obtain
∑
χ∈G∗ Lχ ≡num 2k−2

∑
h∈GDh and

then

Dg = Dg +D0 =
∑
h∈G

Dh −
∑
h̸∈⟨g⟩

Dh =
1

2k−2

 ∑
χ∈G∗

Lχ − 2
∑

χ∈ker g

Lχ

 =

=
1

2k−2

 ∑
χ̸∈ker g

Lχ −
∑

χ∈ker g

Lχ

 .

□
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3. The canonical system of an abelian cover

A canonical divisor KX on a normal variety X is a Weil divisor, the closure of
a canonical divisor of the smooth part of X (see [26, (1.5)]).

If π : X → Y is a G−cover, then G acts on π∗ (OX(KX)) inducing a decom-
position on it in eigenspaces

π∗(OX(KX)) =
⊕
χ∈G∗

π∗(OX(KX))(χ)

Theorem 3.1 ([4, Proposition 2.4], see also [24, Proposition 4.1, c) for the case
when X is smooth]). Let π : X → Y be an abelian cover, with X normal and Y
smooth, whose building data are Lχ and Dg. Then

(3.1) (π∗OX(KX))(χ) ∼= OY (KY )⊗ Lχ−1 .

Consider a global section σ ∈ H0(OY (KY )⊗Lχ−1), and let (σ) ∈ Div(Y ) be the
induced effective divisor. By (3.1) σ determines an element of H0(π∗OX(KX)) ∼=
H0(OX(KX)), whose divisor is, by the proof of [4, Proposition 2.4] (compare also
[21, Section 3.4]),

(3.2) π∗(σ) +
∑
g

(o(g)− rχ
−1

g − 1)Rg.

It follows

Proposition 3.2. Assume that all not empty linear systems |KY + Lχ| are base-
point-free.

Then the base locus of |KX | equals⋂
χ∈G∗:

|KY +Lχ|≠∅

⋃
g∈G:

rχg ̸=o(g)−1

Rg

Proof. Since |KY + Lχ| is base-point-free, if the linear subsystem of |KX | corre-
sponding to H0(OX(KX))(χ

−1) is not empty, by (3.2) its base locus equals⋃
g∈G:

rχg ̸=o(g)−1

Rg.

Since these linear subsystems generate |KX |, its base locus equals their intersec-
tion. □

We recall that all linear systems on Pn are base-point-free, so Proposition
3.2 gives a complete description of the base locus of the canonical system of any
abelian cover of a projective space. For k−double covers of Pn we obtain as in
[13, Section 2] (see also [5, Section 2]),

Corollary 3.3. Let π : X → Pn be a k−double cover with building data Lχ, Dg.
Then |KX | is base-point-free if and only if⋂

χ:degLχ≥n+1

⋃
g∈kerχ

Dg = ∅.
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4. Smooth k-double planes with pg=3

Definition 4.1. A smooth k−double plane is a k−double cover π : X → P2 such
that all Dg are smooth, each two of them intersect transversally, and no point in
P2 belongs to three of them.

In particular the branch divisorD =
∑
Dg is a smooth normal crossing divisor.

The assumption ensures the smoothness of X.

Proposition 4.2. Let π : X → P2 be a smooth k−double plane. Then X is smooth.

Proof. This is a special case of [24, Proposition 3.1] (see also [22, Proposition
3.14]). □

Notation 4.3. It is convenient to consider G and G∗ as vector spaces over the
field with 2 elements as in [22, Setup 3.2]. We are thus going to switch to the
additive notation, so for example the sheaf L1 will be L0 from now on, and for
each character χ we will write −χ for the character that was called χ−1 in the
previous section.

Denote by e1, · · · , ek the standard basis of G = (Z/2)k and by ϵ1, . . . , ϵk the
dual basis of G∗.

To every smooth k−double plane π : X → P2 we consider its building data
Lχ, Dg and the numbers

dg := degDg, lχ := degLχ.

Note that d0 = l0 = 0.
Note moreover that since G = (Z/2Z)k, for each χ ∈ G∗, χ = −χ. We will use

this often in the following computations.

Definition 4.4. We will say that a smooth k−double plane with pg = 3 is

of type A if lϵ1 = 4, lχ ∈ {1, 2} for all χ ̸∈ ⟨ϵ1⟩
of type B if lϵ1 = lϵ2 = lϵ1+ϵ2 = 3, lχ ∈ {1, 2} for all χ ̸∈ ⟨ϵ1, ϵ2⟩
of type C if lϵ1 = lϵ2 = lϵ3 = 3, lχ ∈ {1, 2} for all χ ̸∈ {0, ϵ1, ϵ2, ϵ3}

By (3.1) for a smooth k−double plane π : X → P2

(4.1) pg(X) = h0(OX(KX)) = h0(π∗(OX(KX))) =
∑
χ∈G∗

h0(OP2(lχ − 3)),

so in all cases of Definition 4.4 we obtain pg(X) = 3. Conversely

Proposition 4.5. Up to automorphisms of G every smooth k−double plane with
pg(X) = 3 falls in one of the three cases in Definition 4.4.

Proof. Since X is connected, for all χ ̸= 0, H0(L−1
χ ) = 0 and thus lχ > 0.

By (4.1) lχ ≤ 4 and either there is only one χ with lχ ≥ 3, in which case lχ = 4,
or there are three χ with lχ ≥ 3, all with lχ = 3.

Using an automorphism of G, we can reduce the former case to ”type A”,
and the latter case either to ”type B” or ”type C”, depending if the three special
characters are linearly dependent or not. □
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We now look at when a k−double plane with pg = 3 has canonical system
base-point-free.

Lemma 4.6. Let π : X → P2 be a smooth k−double plane with pg = 3 of type t.
Then |KX | is base-point-free if and only if

dg = 0 for all g ∈ ker ϵ1 when t = A;
dg = 0 for all g ∈ ker ϵ1 ∩ ker ϵ2 when t = B;
dg = 0 for all g ∈

⋃
1≤i<j≤3 (ker ϵi ∩ ker ϵj) when t = C.

Proof. By Corollary 3.3 |KX | is base-point-free if and only if⋂
χ:lχ≥3

⋃
g∈kerχ

Dg = ∅.

For type A we deduce dg = 0 for all g ∈ ker ϵ1.
In the remaining cases we have three characters χ with lχ = 3. We first show

that for each χ with lχ = 3 there is at least one g ∈ kerχ such that dg ̸= 0. In fact,
in this case KP2 + Lχ = 0 and thus by (3.2)

∑
g∈kerχRg is a canonical divisor. If∑

g∈kerχ dg vanished, then this canonical divisor would vanish, and thus OX(KX)
would be isomorphic to OX , contradicting pg = 3.

For type C we obtain that |KX | is base-point-free if and only the following
intersection of three divisors

(4.2)

 ⋃
g∈ker ϵ1

Dg

 ∩

 ⋃
g∈ker ϵ2

Dg

 ∩

 ⋃
g∈ker ϵ3

Dg


vanishes, and by our last remark all three divisors are not empty. Then if there is
a g such that dg ̸= 0, belonging to two different ker ϵi, then any intersection point
among Dg and one of the Dh ̸= 0 in the kernel of the third ϵj is in (4.2), and thus
|KX | is not base-point-free.

Conversely, if dg = 0 for all g ∈
⋃

1≤i<j≤3 ker ϵi ∩ ker ϵj then the three divisors

we are intersecting in (4.2) have no common components, and thus the intersection
is empty since D is a smooth normal crossing divisor.

For type B the result follows similarly using that ker ϵ1 ∩ ker ϵ2 = ker ϵ1 ∩
ker (ϵ1 + ϵ2) = ker ϵ2 ∩ ker (ϵ1 + ϵ2) . □

We can now classify the k−double planes with pg = 3, by considering separately
the three cases in Definition 4.4.

For type A we obtain a special case of the situation classified in [7, Theorem
1.1].

Proposition 4.7. The smooth k−double planes with pg = 3 of type A form four
families, one for each value of k = 1, . . . , 4.
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In all cases π is the canonical map of X, |KX | = |π∗OP2(1)| is base-point-free
and

l0 = 0 lϵ1 = 4 lχ =2 for all remaining χ

dg = 0 for all g ∈ ker ϵ1 dg =24−k for all g ̸∈ ker ϵ1

Proof. By (2.1), for all χ ∈ G∗, lχ + lχ+ϵ1 = lϵ1 +
∑
g∈G ε

g
χ,χ+ϵ1dg ≥ lϵ1 = 4.

Since for χ not in ⟨ϵ1⟩ we have lχ ≤ 2, it follows lχ = 2.
It follows moreover

∑
g∈G ε

g
χ,χ+ϵ1dg = 0 so dg = 0 for all g that are neither in

kerχ nor in kerχ+ ϵ1. Varying χ ∈ G∗ this shows that dg = 0 for all g ∈ ker ϵ1.
Then by Lemma 4.6 |KX | is base-point-free. In fact H0(OX(KX)) equals

H0(OX(KX))(ϵ1): this implies that the canonical map is composed with π. In
fact since π∗(OX(KX))(ϵ1) ∼= OP2(1), π is exactly the canonical map of X and
|KX | = |π∗OP2(1)|.

Finally by Theorem 2.11, for all g ̸∈ ker ϵ1,

dg =

∑
χ ̸∈ker g lχ −

∑
χ∈ker g lχ

2k−2
=

=

(
4 + (2k−1 − 1) · 2

)
−

(
0 + (2k−1 − 1) · 2

)
2k−2

= 24−k.

It follows k ≤ 4.
We leave to the reader the easy check that all 4 cases do exist by checking that

(2.1) holds for them. □

To study the next two cases, we preliminarily note that Corollary 2.6 may be
rewritten as lχ = 1

2

∑
g ̸∈kerχ dg or equivalently

(4.3) ∀χ ∈ G∗
∑

g∈kerχ

dg = d− 2lχ

where d := degD =
∑
g dg.

For type B we obtain only one family.

Proposition 4.8. The smooth k−double planes of type B with pg = 3 form one
family, with k = 2. These surfaces have a canonical system that is base-point-free
and

l0 = 0 lχ = 3 for χ ̸= 0

d0 = 0 dg = 3 for g ̸= 0
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Proof. We note that G is the union of the three subgroups ker ϵ1, ker ϵ2 and
ker (ϵ1 + ϵ2), which pairwise intersect in ker (ϵ1 ∩ ϵ2). It follows that

∑
g∈ker(ϵ1∩ϵ2)

dg =
1

2

−d+
∑

g∈ker ϵ1

dg +
∑

g∈ker ϵ2

dg +
∑

g∈ker(ϵ1+ϵ2)

dg

 (4.3)
=

= d− (lϵ1 + lϵ2 + lϵ1+ϵ2) = d− 9,

so d ≥ 9.
On the other hand, since lχ ≤ 2 for all χ ̸∈ ⟨ϵ1, ϵ2⟩

2k−2d
(2.4)
=

∑
χ∈G∗

lχ = 9 +
∑

χ ̸∈⟨ϵ1,ϵ2⟩

lχ ≤ 9 +
(
2k − 4

)
· 2 = 2k+1 + 1.

so d ≤ 8 + 1
2k−2 .

Since by assumption k ≥ 2, we conclude that d = 9 and k = 2.
The dg follow by Theorem 2.11. Since ϵ1 ∩ ϵ2 is trivial, Lemma 4.6 ensures

that the canonical system is base-point-free.
We leave to the reader to check that equations (2.1) are verified. □

For type C we obtain six families. In order to write them clearly we introduce
the following rather standard notation.

Notation 4.9. The weight w(g) of an element g = (g1, . . . , gk) ∈ (Z/2Z)k is the
number of gi different from zero.

For every h ≤ k we denote by wh(g) the number of gi different from zero with
i ≤ h.

In the following we apply this notation to both the elements of G and of G∗.
We note that by Lemma 4.6 the canonical system of a k-double plane with

pg = 3 of type C is base-point-free if and only if
∑
g|w3(g)≤1 dg = 0.

Let us set ϵ :=
∑3
i=1 ϵi. We note that g ∈ ker ϵ if and only if w3(g) is even. It

follows that

2
∑

g|w3(g)≤1

dg = 3d−
∑
g

w3(g)dg−
∑

g|w3(g) even

dg = 3d−
3∑
i=1

 ∑
g ̸∈ker ϵi

dg

−
∑
g∈ker ϵ

dg,

from which, by (4.3)

(4.4)
∑

g|w3(g)≤1

dg =
1

2

(
3d− 2

∑
lϵi − d+ 2lϵ

)
= d+ lϵ −

3∑
i=1

lϵi = d+ lϵ − 9.

We consider first those surfaces whose canonical system is base-point-free.

Proposition 4.10. The smooth k−double planes with pg = 3 of type C with
canonical system base-point-free form the following five families.
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(C3) k = 3, l0 = 0 and

lχ = 3 if w(χ) = 1, lϵ = 1, lχ = 2 otherwise;

dg = 0 if w(g) ≤ 1, dg = 2 otherwise.

(C4) k = 4, l0 = 0 and

lχ = 3 if w(χ) = 1, lϵ = 1, lχ = 2 otherwise;

dg = 0 if w3(g) ≤ 1, dg = 1 otherwise.

(D3) k = 3, l0 = 0 and

lχ = 3 if w(χ) = 1, lϵ = 2, lχ = 1 otherwise;

dg = 0 if w(g) ≤ 1, de1+e2+e3 = 4, dg = 1 otherwise.

(D4) k = 4, l0 = 0 and

lχ = 3 if w3(χ) = 1, lχ = 1 if w3(χ) = w(χ) = 2 lχ = 2 otherwise;

or w3(χ) ∈ {0, 3}, χ ̸∈ {0, ϵ}
dg = 2 if w3(g) = 3, dg = 1 if w3(g) = w(g) = 2 dg = 0 otherwise.

(D5) k = 5, l0 = 0 and

lχ = 3 if w3(χ) = 1, lχ = 1 if w3(χ) = w(χ) = 2 lχ = 2 otherwise;

or w3(χ) ∈ {0, 3}, χ ̸∈ {0, ϵ}
dg = 1 if w3(g) = w(g) = 2 dg = 0 otherwise.

or w3(g) = 3,

Proof. Since we are assuming that the canonical system is base-point-free, by
Lemma 4.6 and (4.4)

d = 9− lϵ

and we have to distinguish two cases, depending if lϵ = 1 or 2.
We start with the case lϵ = 1. Then d = 8.
By (2.4)

∑
χ∈G∗ lχ = 8 · 2k−2 = 2k+1 so the average of the lχ equals 2. We

know the values of five lχ: l0 = 0, lϵ = 9 − 8 = 1 and the three lϵi = 3; their
average equals 2 as well. Since for all remaining χ, lχ ≤ 2 we conclude that they
all equal 2. By Theorem 2.11 de1+e2 = 24−k so k = 3 or 4. In both cases we
deduce all other dg by 2.11 obtaining the cases (C3) and (C4) in the statement.

Otherwise lϵ = 2 and d = 7. Then by (4.3)
∑
g∈ker ϵi

dg = 1, so for each
i = 1, 2, 3 there exists a unique g ∈ ker ϵi such that dg ̸= 0, that we denote by gi,
and dgi = 1.
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We show that the gi are linearly dependent by proving that the vector subspace

V =

3⋂
i=1

ker gi ⊂ G∗

has at most codimension 2.
First we note that if χ is a character with lχ = 1 different from ϵ1 + ϵ2, ϵ1 + ϵ3

and ϵ2+ ϵ3, then it belongs to V . In fact then for all i ∈ {1, 2, 3} it holds lχ+ϵi ≤ 2
and then by (2.1)∑

g ̸∈kerχ
g∈ker ϵi

dg =
∑

g ̸∈kerχ
g ̸∈ker(χ+ϵi)

dg = lχ + lχ+ϵi − lϵi ≤ 1 + 2− 3 = 0.

Then we note that there are at least two χ in V with lχ ̸= 1: 0 and ϵ. So,
setting A := # {χ ∈ G∗|lχ = 1}, then #V ≥ A−3+2 = A−1. On the other hand

A = 2 · 2k + 1−
∑
χ∈G∗ lχ

(2.4)
= 2k+1 + 1− 7 · 2k−2 = 2k−2 + 1. Therefore

(4.5) #V ≥ A− 1 = 2k−2.

proving the claim that the gi are linearly dependent.
By Lemma 4.6 gi ̸= gj when i ̸= j, so g3 = g1 + g2, and V has exactly

codimension 2, and (4.5) is an equality. We complete ϵ to a basis ϵ, ϵ4, . . . , ϵk of V .
Then ϵ1, . . . , ϵk is a basis of G∗ respect to which V = {χ|w3(χ) ∈ {0, 3}}. Since
(4.5) is an equality we know exactly which lχ are equal to 1: those in V different
from 0 and ϵ, plus the three characters ϵ1 + ϵ2, ϵ1 + ϵ3 and ϵ2 + ϵ3.

Note that respect to the basis e1, . . . , ek of G dual to ϵ1, . . . , ϵk we have

g1 = e2 + e3, g2 = e1 + e3, g3 = e1 + e2.

Finally we compute all dg from the lχ using Theorem 2.11. For g = e1+e2+e3
we obtain

de1+e2+e3 =
1

2k−2

 ∑
w3(χ) odd

lχ −
∑

w3(χ) even

lχ


We note that lχ appears in this expression with the opposite sign of lχ+ϵ.

Since w3(χ) = 3 − w3(χ + ϵ), then χ ∈ V = {χ|w3(χ) ∈ {0, 3}} if and only if
χ + ϵ ∈ V . We have proved that, if χ does not belong to ⟨ϵ1, ϵ2, ϵ3⟩ then lχ = 1
if χ ∈ V and lχ = 2 otherwise. So the contributions of the lχ not in ⟨ϵ1, ϵ2, ϵ3⟩
cancel each other out and

de1+e2+e3 =
1

2k−2
(lϵ1 + lϵ2 + lϵ3 + lϵ − lϵ1+ϵ2 − lϵ1+ϵ3 − lϵ2+ϵ3) =

8

2k−2
= 25−k

so k ≤ 5 and we obtain a family for each k = 3, 4, 5. We leave to the reader the
computation of the remaining dg, giving the families (D3), (D4) and (D5). □

Finally we consider those k−double planes with pg = 3 whose canonical system
is not base-point-free, and see that they provide exactly one more family.
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Proposition 4.11. The smooth k−double planes with pg = 3 whose canonical
system is not base-point-free are of type C and form one family, with k = 3, l0 = 0
and

lϵi = 3 lϵ1+ϵ2 = 1 lχ = 2 otherwise

de1+e2+e3 = 3 de1+e2 = 2 de3 = de1+e3 = de2+e3 = 1 d0 = de1 = de2 = 0

Their canonical system has four simple base points, the preimages of the two points
in the intersection of the line De3 and the conic De1+e2 .

Proof. By propositions 4.7 and 4.8 these double planes are of type C. Thus, using
(2.4)

(4.6) d · 2k−2 =
∑
χ∈G∗

lχ = 9 +
∑

χ ̸∈{ϵj}

lχ ≤ 2k+1 + 1

from which we deduce, since k ≥ 3, d ≤ 8 + 1
2k−2 ≤ 8 + 1

2 . So d ≤ 8.
We recall that the existence of base points for the canonical system is equivalent

to
∑
g|w3(g)≤1 dg ̸= 0. On the other hand by (4.4)∑

g|w3(g)≤1

dg = d+ lϵ − 9 ≤ lϵ − 1.

We conclude that

lϵ = 2 d = 8
∑

g|w3(g)≤1

dg = 1

and thus there is an unique h ∈ G with dh = 1 and w3(h) = 1. Note that exactly
one of the three characters ϵj is not in kerh.

The inequality in (4.6) fails to be an equality exactly by 1. This means that
there is exactly one character η with lη = 1. By the expression of dh in term of
the lχ in Theorem 2.11 we deduce that η ̸∈ kerh (or dh would be negative) and
dh = 1

2k−3 . So k = 3.
Using an automorphism of G we can now assume without loss of generality

η = ϵ1 + ϵ2. We have now computed all lϵ: we leave to the reader to compute all
dg by applying Theorem 2.11.

By (3.2) the canonical system |KX | is generated by the following three divisors

Re3 +Re2+e3 Re3 +Re1+e3 Re1+e2

and then by the smoothness assumption the base locus is the schematic intersection
Re1+e2 ∩Re3 .

The line De3 and the conic De1+e2 intersect transversally in two points. Above
each of them there are two points of X, stabilized by the index two subgroup
⟨e1 + e2, e3⟩, the intersection points of Re1+e2 ∩Re3 . A straightforward local com-
putation shows that Re1+e2 and Re3 are transversal. □
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5. The eleven families

In the previous section we have proved that the smooth k-double planes with
pg = 3 form 11 families. In this section we will study these families.
Notation. We will denote each family by a letter and a number. The number is
the exponent k of the Galois group, while the letter reminds the type. In particular
the 4 families in Proposition 4.7 give surfaces of type A1, A2, A3 and A4, while
the surfaces in Proposition 4.8 form the family B2. There are more families of
surfaces of type C with the same Galois group, so for these we need to use more
letters: we will use the letters C, D and E. Precisely the surfaces in Proposition
4.10 are named, as already specified in that statement, as C3, C4, D3, D4 and D5,
while the surfaces in Proposition 4.11 form the family E3.

All these surfaces have ample canonical class, since it is numerically the pull-
back of an ample class P2 (see e.g. [24, Proof of Proposition 4.2]). Their irregu-
larity vanishes, for example since their geometric genus is 3 by construction and
the Euler characteristic is 4 by [24, (4.8)].

For each family we compute the degree of the canonical map.

Theorem 5.1. All smooth k-double covers S of the plane with geometric genus 3
are regular surfaces with ample canonical class.

They form 11 unirational families, that we labeled as A1, A2, A3, A4, B2, C3,
C4, D3, D4, D5 and E3 in a way that the number in the notation equals k. In
particular A1 is a family of double planes, A2 and B2 are two families of bidouble
planes and so on.

The degree of the canonical map φKS
is constant in each family.

We summarize in the following table the modular dimension (the dimension
of its image in the Gieseker moduli space of the surfaces of general type) of each
family, and the values of K2

S and degφKS
of each surface in the family:

Family A1 A2 A3 A4 B2 C3 C4 D3 D4 D5 E3

mod. dim. 36 20 12 8 19 12 8 12 8 6 12
K2
S 2 4 8 16 9 8 16 2 4 8 8

degφKS
2 4 8 16 9 8 16 2 4 8 4

In particular the modular dimension of each family equals 4 + 26−k with one
exception, the family B2, whose dimension is 19. The canonical map is a morphism
of degree K2

S on P2 unless S of type E3, in which case the canonical map is a
rational map of degree K2

S − 4 = 4 undefined at 4 points.

Proof. Each surface S is a Galois cover π : S → P2. By the Leray spectral sequence,
H1(S,OS) ∼= H1(P2, π∗OS) ∼=

⊕
χH

1
(
P2,L−1

χ

)
. Since every line bundle on P2

has trivial first cohomology group, it follows h1(S,OS) = 0.
The value of the self-intersection of the canonical class follows by the formula

(see [24, (4.8)])

K2 = 2k

−3 +
1

2

∑
g∈G

dg

2
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By Propositions 4.7, 4.8, 4.10, 4.11 the canonical system of S is base point free
unless S is of type E3, in which case it has four simple base points. So (blowing
up the base points in this last case) we get a surface with canonical system having
movable part of self intersection as in the third line of the table above, so strictly
positive. Then the canonical map is not composed with a pencil. Since pg = 3
then the canonical map of this surface is a morphism on P2 of the given degree.

The families are parametrized by a Zariski open subset of a product of pro-
jective spaces, the complete linear systems to which the divisors |Dg|, quoted by
the faithful action of PGL(3), a group of dimension 8. Since the surfaces are of
general type, their automorphism group is finite and therefore it contains only
finitely many subgroups of the form (Z/2Z)k, which implies that the map from
this quotient to the Gieseker moduli space of the surfaces of general type is finite.
So the modular dimension of each family equals

−8 +
∑

dim |Dg|

which gives the modular dimensions in the table above. As an example, the
family E3 depends on the choice of three lines, a conic and a cubic so its modular
dimension is

−8 + 3 · 2 + 5 + 9 = 12.

□

For each family we will first give explicit equations of the surfaces embedded
in a suitable weighted projective space, computed by using the equations in [6,
Section 6] (see also [22, Section 3.3]) as follows.

We consider a weighted projective space whose first three variables x0, x1, x2
of weight 1. The group acts trivially on them: in fact the k-double cover is the

map on P2 given by them. Each branch divisor divisor Dg, g =
∑k

1 ijej , is defined
by a homogeneous polynomial in the xj , the polynomial fi1···ik(xj) ∈ C[x0, x1, x2].
If Dg = 0 then fi1···ik(xj) = 1.

Then we add variables yi1···ik , ij ∈ {0, 1}, meaning that ej acts on yi1···ik via
multiplication by (−1)ij . The equations

yr1···rkys1···sk = yt1···tk
∏

∑
ijrj ,

∑
ijsj

both odd

fi1···ik when all rj + sj + tj are even(5.1)

define an embedding of these surfaces in the weighted projective with variables
xj , yi1···ik . The weight of the variable yi1···ik is the positive integer l∑

j ijϵj
.

Sometimes these equations allow to eliminate some variables, embedding the
surfaces in a weighted projective space of smaller dimension. For example for the
family A2 we find the equation y11y01 = y10, using it to eliminate y10 gives an
embedding in a smaller dimensional weighted projective space. In the following
we will eliminate all the variables that we can eliminate, to give simpler equations.

Then we will discuss all ”intermediate” quotients, the quotients of these sur-
faces by subgroups of the Galois group of the cover, with a focus on K3 surfaces
and symplectic involutions.
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5.1. Family A1. These surfaces have K2 = 2.
They are the hypersurfaces of degree 8 in P(13, 4), with variables x0, x1, x2, y1,

y21 = f1(xj),

with deg f1 = 8.
These are the Horikawa surfaces in [15][Theorem 1.6.(i)].

5.2. Family A2. These surfaces have K2 = 4.
These are the complete intersections of two quartics in P(13, 22), with variables

x0, x1, x2, y11, y01,

y211 = f10(xj) y201 = f11(xj)

with deg f• = 4.
There are three intermediate quotients: the quotient by e1 and e1 + e2 are

double planes branched on quartics, so del Pezzo surfaces of degree 2. The quotient
by e2 is a double plane branched on both quartics, so a degeneration of the family
A1, a Horikawa surface with 16 nodes.

This family is in [7, Theorem 1.1.(5)]. These surfaces were also studied by
Horikawa, see [16, Theorem 2.1].

5.3. Family B2. These surfaces have K2 = 9.
They are embedded in P(13, 33), with variables x0, x1, x2, y10, y01, y11, defined

by the equations

Rank

f10(xj) y10 y11
y10 f11(xj) y01
y11 y01 f01(xj)

 = 1

with deg f• = 3.
The three intermediate quotients are double planes branched on the union of

two cubics: three K3 surfaces with 9 nodes.
We met this family in [5, Example 6] and [11, Proposition 6.3]. They are also

studied in [19] and [12].
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5.4. Family A3. These surfaces have K2 = 8.
They are embedded in P(13, 26), with variables x0, x1, x2, y010, y001, y110,

y101, y011, y111, defined by the equations

Rank


f111(xj) y010 y001 y111
y010 f110(xj) y011 y101
y001 y011 f101(xj) y110
y111 y101 y110 f100(xj)

 = 1

with deg f• = 2.
The quotients by ker ϵ1 are double planes branched on the union of 4 conics,

degenerations of the family A1 with 24 nodes. The quotients by each of the other
6 subgroups of index 2 are double planes branched on the union of 2 conics, del
Pezzo surfaces of degree 2 with 4 nodes.

The quotients by a subgroup ⟨g⟩ of index 4 behave differently according to
if g belongs to ker ϵ1 or not. If g ∈ ker ϵ1 the quotient is a degeneration of the
family A2 with 16 nodes. Otherwise, for the remaining four g, the quotients are
2-double planes such that each of the three branching divisors is a conic. By, e.g
[4, Propositions 2.4-2.5 and their proof] they have pg = 0 and bicanonical sheaf
trivial, so they are Enriques surfaces.

These surfaces are in [7, Theorem 1.1.(3)], where the authors give them through
equations of a different (not normal) birational model.
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5.5. Family C3. These surfaces have K2 = 8.
They are embedded in P(14, 23), with variables x0, x1, x2, y111, y110, y101, y011,

defined by the equations

Rank

f110(xj) y011 y101
y011 f101(xj) y110
y101 y110 f011(xj)

 = 1 y2111 = f111(xj)

with deg f• = 2.
The Galois group has seven subgroups of index 2, the three of the form ker ϵi,

the three of the form ker ϵi + ϵj , and ker ϵ.
The quotients by a subgroup of the form ker ϵi are double planes branched on

the union of 3 conics, so K3 surfaces with 12 nodes. The quotients by a subgroup
of the form ker ϵi + ϵj are double planes branched on the union of 2 conics, so del
Pezzo surfaces of degree 2 with 4 nodes. The quotients by ker ϵ are double planes
branched on one conic, so P1 × P1.

The quotients by a subgroup ⟨g⟩ of index 4 are 2−double planes as follows. If
g = e1 + e2 + e3 then the three branching divisors are three smooth conics, so the
quotients are smooth Enriques surfaces. If g is of the form ei + ej then one of the
branching divisors is empty, one is a smooth conic, and the last is union of two
conics: the quotients are K3 surfaces with 8 nodes. If g is one of the ei then two
divisors are conics whereas the third is the union of two conics: they are surfaces
with K2 = 4, pg = 2 and 8 nodes.

Then each surface in this family dominates six different K3 surfaces. Let us
give names to them. Let Ui,j be the K3 with 8 nodes obtained quoting by ⟨ei+ej⟩
and let Vk be the K3 with 12 nodes obtained quoting by ker ϵk. Then these K3 are
naturally subdivided in three pairs by double covers Vi,j → Uk (here k ̸∈ {i, j})
branched on 8 nodes and nowhere else, quotient of Vi,j by the symplectic involution
induced by ei. The Vi,j are special cases of the K3 surfaces considered in [14, 3.5],
where the plane quartic considered there splits as union of two conics.
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5.6. Family D3. These surfaces have K2 = 2.
They are embedded in P(16, 2) with variables x0, x1, x2, y110, y101, y011, y111,

defined by the equations

Rank

f110(xj) y011 y101
y011 f101(xj) y110
y101 y110 f011(xj)

 = 1 y2111 = f111(xj)

with deg f110 = deg f101 = deg f011 = 1 and deg f111 = 4. Note that these
equations are identical to those of the family C3, the only difference being in the
degrees.

The quotients by a subgroup of the form ker ϵi are double planes branched on
the union of 2 lines and one quartic, so K3 surfaces with 9 nodes. The quotients
by a subgroup of the form ker ϵi + ϵj are double planes branched on the union of
2 lines, so del Pezzo surfaces of degree 8 with 1 node. The quotients by ker ϵ are
double planes branched on one quartic, so smooth del Pezzo surfaces of degree 2.

The quotients by a subgroup ⟨g⟩ of index 4 are 2−double planes as follows.
If g = e1 + e2 + e3 then the three branching divisors are lines, so the quotients
are projective planes P2. If g is of the form ei + ej then one of the branching
divisors is empty, one is a smooth quartic, and the last is union of two lines: the
quotients are K3 surfaces with 2 nodes. If g is one of the ei then two divisors are
lines whereas the third is the union of a line and a quartic: they are surfaces with
K2 = 1, pg = 2 and 8 nodes.

Then each surface in this family dominates six different K3 surfaces naturally
subdivided in three pairs as in the previous case. More precisely, let Ui,j be the
K3 with 2 nodes obtained quoting by ⟨ei + ej⟩ and let Vk be the K3 with 9 nodes
obtained quoting by ker ϵk. Then we have double covers Vi,j → Uk, k ̸∈ {i, j},
branched on 8 nodes and nowhere else, quotient of Vi,j by the symplectic involution
induced by ei. These are again special cases of the K3 surfaces considered in
[14, 3.5], where the plane conic considered there splits as union of two lines.

We finally note that, since the quotient by e1+e2+e3 represents these surfaces
as double cover of the plane, these surfaces are a degeneration of the surfaces in
the family A1, special Horikawa surfaces in the family of [15, Theorem 1.6.(i)] with
extra automorphisms.



SMOOTH K-DOUBLE COVERS 23

5.7. Family E3. These surfaces have K2 = 8.
They are embedded in P(14, 23, 32), with variables x0, x1, x2, y110, y101, y011,

y111, y100, y010, defined by the equations

Rank

f110f111 y100 y010
y100 f101 y110
y010 y110 f011

 = 1, Rank

f110f001 y011 y101
y011 f101 y110
y101 y110 f011

 = 1,

Rank

f111 y100 y111
y100 f110f101 y011
y111 y011 f001

 = 1, Rank

f111 y010 y111
y010 f110f011 y101
y111 y101 f001

 = 1.

with deg f101 = deg f011 = deg f001 = 1, deg f110 = 2 and deg f111 = 3.
The quotients by the subgroup ker ϵ1 or ker ϵ2 are double planes branched on

the union of one line, one conic and one cubic, so K3 surfaces with 11 nodes. The
quotients by the subgroup ker ϵ3 are branched on the union of three lines and one
cubic, so K3 surfaces with 12 nodes. The quotients by ker ϵ1 + ϵ2 are branched on
the union of two lines, so del Pezzo surfaces of degree 8 with 1 node. The quotients
by ker ϵ1 + ϵ3 or ker ϵ2 + ϵ3 are branched on the union of two lines and a conic, so
del Pezzo surfaces of degree 2 with 5 nodes. The quotients by ker ϵ are branched
on the union of one line and one cubic, so del Pezzo surfaces of degree 2 with 3
nodes.

The quotients by a subgroup ⟨g⟩ of index 4 are 2−double planes as follows.
If g = e1 + e2 + e3 then two of the branching divisors are lines and the third is
the union of a line and a conic, so the quotients are del Pezzo surfaces of degree
1 with 4 nodes. If g = e1 + e2 then one divisor is empty, the second is the union
of two lines, the third is the union of a line and a cubic, and the quotients are K3
surfaces with 8 nodes. If g is e1 + e3 or e2 + e3 then one of the branching divisors
is a line, one is a cubic, and the last is union of a line and a conic: the quotients
have K2 = pg = 1 and 4 nodes. If g = e3 then two divisors are lines and the third
is union of a conic and a cubic: the quotients have K2 = 1, pg = 2 and 12 nodes.
If g is e1 or e2 then one divisor is the union of two lines, one is a conic and the
last is the union of a line and a cubic, giving surfaces with K2 = 4, pg = 2 and 8
nodes.

Then each surface in this family dominates four different K3 surfaces. We get
only one symplectic involution by the construction, on the K3 surface with 8 nodes
quotient by e1 + e2. The symplectic involution is induced by e1, and the quotient
is the K3 with 12 nodes obtained by ker ϵ3. The two K3 surfaces with 11 nodes
are both dominated by a surface of general type with K2 = pg = 1.
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5.8. Family A4. These surfaces have K2 = 16.
They are embedded in P(13, 214) with variables x0, x1, x2, y1111, y0100, y0010,

y0001, y1011, y1101, y1110, y0110, y0101, y0011, y1010, y1100, y0111, y1001, defined by
the equations

Rank


f1000f1011 y1111 y1011 y1100
y1111 f1110f1101 y0100 y0011
y1011 y0100 f1100f1111 y0111
y1100 y0011 y0111 f1010f1001

 = 1

Rank


f1000f1101 y1111 y1101 y1010
y1111 f1110f1011 y0010 y0101
y1101 y0010 f1010f1111 y0111
y1010 y0101 y0111 f1100f1001

 = 1

Rank


f1000f1110 y1111 y1110 y1001
y1111 f1101f1011 y0001 y0110
y1110 y0001 f1001f1111 y0111
y1001 y0110 y0111 f1100f1010

 = 1

Rank


f1100f1101 y0100 y0110 y1010
y0100 f1110f1111 y0010 y1110
y0110 y0010 f1010f1011 y1100
y1010 y1110 y1100 f1000f1001

 = 1

Rank


f1100f1110 y0100 y0101 y1001
y0100 f1101f1111 y0001 y1101
y0101 y0001 f1001f1011 y1100
y1001 y1101 y1100 f1000f1010

 = 1

Rank


f1010f1110 y0010 y0011 y1001
y0010 f1011f1111 y0001 y1011
y0011 y0001 f1001f1101 y1010
y1001 y1011 y1010 f1000f1100

 = 1

Rank


f1000f1111 y1011 y1101 y1110
y1011 f1100f1011 y0110 y0101
y1101 y0110 f1010f1101 y0011
y1110 y0101 y0011 f1001f1110

 = 1

with deg f• = 1.
The quotients by ker ϵ1 are double planes branched on the union of 8 lines,

degenerations of the family A1 with 28 nodes. The quotients by each of the other
6 subgroups of index 2 are double planes branched on the union of 4 lines. They
are del Pezzo surfaces of degree 2 with 6 nodes.

The quotients by a subgroup H of index 4 behave differently according to if
H is contained in ker ϵ1 or not. If H ⊂ ker ϵ1 the quotients are degenerations of
the family A2 with 24 nodes. Otherwise, the quotients are Enriques surfaces with
6 nodes.
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The quotients by a subgroup ⟨g⟩ of index 8 also behave differently according
to if g belongs to ker ϵ1 or not. If g ∈ ker ϵ1 the quotients are degenerations of
the family A3 with 32 nodes. Otherwise the quotients are numerical Campedelli
surfaces, surfaces with pg = 0, K2 = 2 and ample canonical class.

Note that these surfaces are then double covers of numerical Campedelli sur-
faces: in fact they were first found by Persson in this way in [25, Ex. 5.8]. They
are also in [7, Theorem 1.1.(1)], where the authors give them through equations
of a different (not normal) birational model.
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5.9. Family C4. These surfaces have K2 = 16.
They are embedded in P(14, 211) with variables x0, x1, x2, y1110, y1001, y0011,

y0101, y1111 y0111, y1101, y1011, y0001, y1100, y1010, y0110 defined by the equations

Rank


f1110 y1001 y0101 y0011 y1111 y1110
y1001 f1010f1100f0111 y1100f1100 y1010f1010 y0110f0111 y0111
y0101 y1100f1100 f1100f0110f1011 y0110f0110 y1010f1011 y1011
y0011 y1010f1010 y0110f0110 f1010f0110f1101 y1100f1101 y1101
y1111 y0110f0111 y1010f1011 y1100f1101 f1101f1011f0111 y0001
y1110 y0111 y1011 y1101 y0001 f1111

 = 1

Rank

f1100f1101 y0110 y1010
y0110 f1010f1011 y1100
y1010 y1100 f0110f0111

 = 1

with deg f• = 1.
We describe only the intermediate quotients that are K3 surfaces.
We find three intermediate K3 surfaces with 15 nodes, the quotients by ker ϵi,

i = 1, 2, 3, double planes branched on six lines. Each of them is double covered
by a K3 with 14 nodes, the quotient by (ker ϵi) ∩ (ker ϵj + ϵk), {i, j, k} = {1, 2, 3}
with a symplectic involution by ej . Note that each of these last surfaces is double
covered by two further intermediate quotients with pg = 1, the quotients by ej+ek
and ej + ek + e4, both giving surfaces with K ample, K2 = 2 and 8 nodes. There
are special case f the ”special Horikawa surfaces” considered in [20]. These pairs
of K3 are again a specialization of [14, 3.5], where all plane curves splits as union
of lines.
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5.10. Family D4. These surfaces have K2 = 4.
They are embedded in P(18) = P7 with variables x0, x1, x2, y1100, y1010, y0110,

y0001, y1111 we take the surfaces defined by the equations

Rank

f1100(xj) y0110 y1010
y0110 f1010(xj) y1100
y1010 y1100 f0110(xj)

 = 1
y21111 = f1110(xj)

y20001 = f1111(xj)

with f• general of respective degrees deg f1100 = deg f1010 = deg f0110 = 1 and
deg f1110 = deg f1111 = 2.

The intermediate quotients that are K3 surfaces form three towers of three
K3s corresponding to the chain of subgroups, for i, j ≤ 3, i ̸= j

⟨ei + ej⟩ ⊂ ⟨ei + ej , e4⟩ ⊂ ⟨ei, ej , e4⟩
giving three towers of double covers between K3 surfaces Ui,j → Vi,j →Wi,j with
respectively 4, 10 and 13 nodes.

5.11. Family D5. These surfaces have K2 = 8.
They are embedded in P(112) = P11 with variables x0, x1, x2, y11000, y10100,

y01100, y00010, y00001, y11110, y11101, y00011, y11111 defined by the equations

Rank


f11111(xj) y00010 y00001 y11111
y00010 f11110(xj) y00011 y11101
y00001 y00011 f11101(xj) y11110
y11111 y11101 y11110 f11100(xj)

 = 1

Rank

f11000(xj) y01100 y10100
y01100 f10100(xj) y11000
y10100 y11000 f01100(xj)

 = 1

with f• general of degree 1.
There are 48 intermediate quotients that are K3 surfaces, divided in three

families, each of them giving several towers of three consecutive double covers
between (four) K3 surfaces. One for each pair i ̸= j, i, j = 1, 2, 3. Namely for each
pair of subgroups H4 ⊂ H8 with |Hd| = d and

⟨ei + ej⟩ ⊂ H4 ⊂ H8 ⊂ ⟨ei, ej , e4, e5⟩
we obtain a tower of 4 K3 surfaces with respectively 8, 12, 14 and 15 nodes, with
the surfaces with 8 and 15 nodes depending only on i and j.

6. Burgers

We recall Laterveer’s definition [18, Definition 3.1]

Definition 6.1. A surface S is called a triple K3 burger if the following conditions
are satisfied:

(0) S is minimal, of general type, with q = 0 and pg = 3;
(i) there exist involutions σj : S → S (j = 0, 1, 2) that commute with one an-

other, and such that the quotientsXj := S/ ⟨σj⟩ (j = 0, 1, 2) are birational
to a K3 surface Xj ;
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(ii) there is an isomorphism

((p0)
∗, (p1)

∗, (p2)
∗) : H2(X0,O)⊕H2(X1,O)⊕H2(X2,O) → H2(S,O),

where pj : S → Xj denotes the quotient morphism.

Laterveer’s original definition included also the third condition (iii) that the in-
volutions respect the canonical divisor: σ∗

j |KS | = |KS |. We removed that because
it is automatic since the pull-back of a canonical divisor by an automorphism is
the divisor of the pull-back of the corresponding differential form.

Our surfaces not of type A are natural candidates to be triple K3 burger. In
fact

Proposition 6.2. Let S be a smooth k−double plane not of type A.
If S is of type B2 set, in the notation of the previous section, σ0 = e1 + e2,

σ1 = e1 and σ2 = e2. Otherwise set σ0 = e1 + e2, σ1 = e2 + e3 and σ2 = e1 + e3.
Then there is an isomorphism

((p0)
∗, (p1)

∗, (p2)
∗) : H2(X0,O)⊕H2(X1,O)⊕H2(X2,O) → H2(S,O),

where pj : S → Xj denotes the quotient morphism.

Proof. Let S be a smooth k−double plane of type C. So we are considering now
the families C3, C4, D3, D4, D5 and E3, and not considering the family B2 yet.

We know that H0(S,KS)
χ = 0 unless χ = ϵ1, ϵ2, or ϵ3. More precisely

H0(S,KS) = p∗0H
0(X0,KX0

)⊕ p∗1H
0(X1,KX1

)⊕ p∗2H
0(X2,KX2

) = C⊕ C⊕ C.
which implies the stated isomorphism by the standard Serre duality.

If S is of type B2 the proof follows by the same argument replacing ϵ3 with
ϵ1 + ϵ2. □

The following consequence has already been proved by Laterveer for the sur-
faces of type B2 in [18, Remark 3.4]

Corollary 6.3. The families B2, C3, D3, D4, D5 and E3 are families of triple
K3 burgers.

Proof. All our surfaces have ample canonical class, so condition (0) is automatic.
In Proposition 6.2 we have chosen involutions σj in each case and proved

condition 2 for them. About condition (i), we have shown that the surfaces Xj

are nodal K3 surfaces in the previous section. □

We note that the surfaces in the family C4 are not triple K3 burgers since the
quotients Xj are three surfaces of general type, more precisely surfaces with K
ample, K2 = 2, pg = 1, q = 0 and 8 nodes. However each of them is a double
cover of a K3 surface with 14 nodes.
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Dipartimento di Matematica, Università di Trento, via Sommarive 14, 38123 Trento,
Italy.

Email address: Roberto.Pignatelli@unitn.it

https://doi.org/10.1007/978-3-031-11938-5_13
https://doi.org/10.1515/crll.1991.417.191
https://doi.org/10.1142/S0129167X17500410
https://doi.org/10.1007/s00208-016-1450-x

	1. Introduction
	Notation

	2. Abelian covers
	3. The canonical system of an abelian cover
	4. Smooth k-double planes with pg=3
	5. The eleven families
	5.1. Family A1
	5.2. Family A2
	5.3. Family B2
	5.4. Family A3
	5.5. Family C3
	5.6. Family D3
	5.7. Family E3
	5.8. Family A4
	5.9. Family C4
	5.10. Family D4
	5.11. Family D5

	6. Burgers
	References

